Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.181
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612455

RESUMO

Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.


Assuntos
Ferroptose , Radioterapia (Especialidade) , Radiossensibilizantes , Morte Celular Regulada , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Morte Celular , Hipóxia
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612700

RESUMO

Drug hypersensitivity reactions (DHRs) to platinum-based compounds (PCs) are on the rise, and their personalized and safe management is essential to enable first-line treatment for these cancer patients. This study aimed to evaluate the usefulness of the basophil activation test by flow cytometry (BAT-FC) and the newly developed sIgE-microarray and BAT-microarray in diagnosing IgE-mediated hypersensitivity reactions to PCs. A total of 24 patients with DHRs to PCs (20 oxaliplatin and four carboplatin) were evaluated: thirteen patients were diagnosed as allergic with positive skin tests (STs) or drug provocation tests (DPTs), six patients were diagnosed as non-allergic with negative STs and DPTs, and five patients were classified as suspected allergic because DPTs could not be performed. In addition, four carboplatin-tolerant patients were included as controls. The BAT-FC was positive in 2 of 13 allergic patients, with a sensitivity of 15.4% and specificity of 100%. However, the sIgE- and BAT-microarray were positive in 11 of 13 DHR patients, giving a sensitivity of over 84.6% and a specificity of 90%. Except for one patient, all samples from the non-allergic and control groups were negative for sIgE- and BAT-microarray. Our experience indicated that the sIgE- and BAT-microarray could be helpful in the endophenotyping of IgE-mediated hypersensitivity reactions to PCs and may provide an advance in decision making for drug provocation testing.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade Imediata , Poliquetos , Radiossensibilizantes , Tionas , Humanos , Animais , Teste de Degranulação de Basófilos , Compostos de Platina , Carboplatina/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Antineoplásicos Alquilantes , Imunoglobulina E
3.
ACS Appl Mater Interfaces ; 16(14): 17242-17252, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556729

RESUMO

Protective autophagy and DNA damage repair lead to tumor radio-resistance. Some hypoxic tumors exhibit a low radiation energy absorption coefficient in radiation therapy. High doses of X-rays may lead to side effects in the surrounding normal tissues. In order to overcome the radio-resistance and improve the efficacy of radiotherapy based on the characteristics of the tumor microenvironment, the development of radiosensitizers has attracted much attention. In this study, a Janus ACSP nanoparticle (NP) was developed for chemodynamic therapy and radiosensitization. The reactive oxygen species generated by the Fenton-like reaction regulated the distribution of cell cycles from a radioresistant phase to a radio-sensitive phase. The high-Z element, Au, enhanced the production of hydroxyl radicals (•OH) under X-ray radiation, promoting DNA damage and cell apoptosis. The NP delayed DNA damage repair by interfering with certain proteins involved in the DNA repair signaling pathway. In vivo experiments demonstrated that the combination of the copper-ion-based Fenton-like reaction and low-dose X-ray radiation enhanced the effectiveness of radiotherapy, providing a novel approach for synergistic chemodynamic and radiosensitization therapy. This study provides valuable insights and strategies for the development and application of NPs in cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Neoplasias/tratamento farmacológico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
4.
ACS Nano ; 18(11): 8325-8336, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447099

RESUMO

Radiotherapy is a mainstay treatment used in clinics for locoregional therapy, although it still represents a great challenge to improve the sensitivity and accuracy of radiotherapy for tumors. Here, we report the conjugated polymer, polydiiododiacetylene (PIDA), with an iodine content of 84 wt %, as a highly effective computed tomography (CT) contrast agent and tumor microenvironment-responsive radiosensitizer. PIDA exhibited several key properties that contribute to the improvement of precision radiotherapy. The integrated PIDA nanofibers confined within the tumor envelope demonstrated amplified CT intensity and prolonged retention, providing an accurate calculation of dose distribution and precise radiation delivery for CT image-guided radiotherapy. Therefore, our strategy pioneers PIDA nanofibers as a bridge to cleverly connect a fiducial marker to guide accurate radiotherapy and a radiosensitizer to improve tumor sensitivity, thereby minimizing potential damage to surrounding tissues and facilitating on-demand therapeutic intervention in tumors.


Assuntos
Nanofibras , Neoplasias , Polímero Poliacetilênico , Radiossensibilizantes , Radioterapia Guiada por Imagem , Humanos , Carbono , Microambiente Tumoral , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico
5.
Mol Pharm ; 21(3): 1222-1232, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364870

RESUMO

The morbidity and mortality of lung cancer are still the highest among all malignant tumors. Radiotherapy plays an important role in clinical treatment of lung cancer. However, the effect of radiotherapy is not ideal due to the radiation resistance of tumor tissues. Abnormalities in tumor vascular structure and function affect blood perfusion, and oxygen transport is impeded, making tumor microenvironment hypoxic. Tumor hypoxia is the major cause of radiotherapy resistance. By promoting tumor vessel normalization and enhancing vascular transport function, tumor hypoxia can be relieved to reduce radiotherapy resistance and increase tumor radiotherapy sensitivity. In our previous study, a pericytes-targeted tumor necrosis factor alpha (named Z-TNFα) was first constructed and produced by genetically fusing the platelet-derived growth factor receptor ß (PDGFRß)-antagonistic affibody (ZPDGFRß) to the TNFα, and the Z-TNFα induced normalization of tumor vessels and improved the delivery of doxorubicin, enhancing tumor chemotherapy. In this study, the tumor vessel normalization effect of Z-TNFα in lung cancer was further clarified. Moreover, the tumor hypoxia improvement and radiosensitizing effect of Z-TNFα were emphatically explored in vivo. Inspiringly, Z-TNFα specifically accumulated in Lewis lung carcinoma (LLC) tumor graft and relieved tumor hypoxia as well as inhibited HIF-1α expression. As expected, Z-TNFα significantly increased the effect of radiotherapy in mice bearing LLC tumor graft. In conclusion, these results demonstrated that Z-TNFα is also a promising radiosensitizer for lung cancer radiotherapy.


Assuntos
Neoplasias Pulmonares , Radiossensibilizantes , Animais , Camundongos , Neoplasias Pulmonares/radioterapia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Doxorrubicina , Microambiente Tumoral
6.
Phys Chem Chem Phys ; 26(11): 8761-8766, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38419552

RESUMO

5-Fluorouracil is now routinely used in chemo- and radiotherapy. Incorporated within DNA, the molecule is bound to the sugar backbone, forming the 5-fluorouridine sub-unit investigated in the present work. For the clinical usage of the latter, no information exists on the mechanisms that control the radiosensitizing effect at the molecular level. As low energy (< 12 eV) electrons are abundantly produced along the radiation tracks during cancer treatment using beams of high energy particles, we study how these ballistic secondary electrons damage the sensitizing molecule. The salient result from our study shows that the N-glycosidic bonds are principally affected with a cross-section of approximately two orders of magnitude higher than the canonical thymidine, reflecting to some degree the surviving factor of radiation-treated carcinoma cells with and without 5-fluorouracil incorporation. This result may help in the comprehension of the radiosensitizing effect of the fluoro-substituted thymidine in DNA.


Assuntos
Elétrons , Radiossensibilizantes , Uridina/análogos & derivados , DNA/química , Radiossensibilizantes/química , Dano ao DNA , Timidina , Fluoruracila
7.
Eur J Med Chem ; 268: 116218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387331

RESUMO

Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.


Assuntos
Cianatos , Nanopartículas Metálicas , Neoplasias , Radiossensibilizantes , Humanos , Ouro/uso terapêutico , Neoplasias/tratamento farmacológico , Radiossensibilizantes/farmacologia , Tiorredoxinas
8.
Artif Cells Nanomed Biotechnol ; 52(1): 122-129, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38315518

RESUMO

Locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is characterized by high rate of recurrence, resulting in a poor survival. Standard treatments are associated with significant toxicities that impact the patient's quality of life, highlighting the urgent need for novel therapies to improve patient outcomes. On this regard, noble metal nanoparticles (NPs) are emerging as promising agents as both drug carriers and radiosensitizers. On the other hand, co-treatments based on NPs are still at the preclinical stage because of the associated metal-persistence.In this bioconvergence study, we introduce a novel strategy to exploit tumour chorioallantoic membrane models (CAMs) in radio-investigations within clinical equipment and evaluate the performance of non-persistent nanoarchitectures (NAs) in combination with radiotherapy with respect to the standard concurrent chemoradiotherapy for the treatment of HPV-negative HNSCCs. A comparable effect has been observed between the tested approaches, suggesting NAs as a potential platinum-free agent in concurrent chemoradiotherapy for HNSCCs. On a broader basis, our bioconvergence approach provides an advance for the translation of Pt-free radiosensitizer to the clinical practice, positively shifting the therapeutic vs. side effects equilibrium for the management of HNSCCs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Radiossensibilizantes , Humanos , Carcinoma de Células Escamosas/patologia , Platina/farmacologia , Platina/uso terapêutico , Qualidade de Vida , Infecções por Papillomavirus/terapia , Cisplatino/uso terapêutico , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Radiossensibilizantes/farmacologia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408538

RESUMO

Radiotherapy is one of the most commonly used cancer therapies with many benefits including low toxicity to healthy tissues. However, a major problem in radiotherapy is cancer radioresistance. To enhance the effect of this kind of therapy several approaches have been proposed such as the use of radiosensitizers. A combined treatment of radiotherapy and radiosensitizing drugs leads to a greater effect on cancer cells than anticipated from the addition of both responses (synergism). In this study, high-definition FT-IR imaging was applied to follow lipid accumulation in prostate cancer cells as a response to X-ray irradiation, radiosensitizing drugs, and a combined treatment of X-rays and the drugs. Lipid accumulation induced in the cells by an increasing X-ray dose and the presence of the drugs was analyzed using Principal Component Analysis and lipid staining. Finally, the synergistic effect of the combined therapy (X-rays and radiosensitizers) was confirmed by calculations of the integral intensity of the 2850 cm-1 band.


Assuntos
Neoplasias da Próstata , Radiossensibilizantes , Masculino , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Lipídeos/uso terapêutico
10.
Phytomedicine ; 125: 155290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308918

RESUMO

BACKGROUND: In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE: This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS: The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS: At a concentration of 25 µM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION: This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.


Assuntos
Glucosídeos , Isoflavonas , Neoplasias Pulmonares , Radiossensibilizantes , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fatores de Crescimento do Endotélio Vascular/metabolismo , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
11.
Int J Biol Macromol ; 263(Pt 1): 130173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360238

RESUMO

Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.


Assuntos
Lesões por Radiação , Protetores contra Radiação , Radiossensibilizantes , Animais , Protetores contra Radiação/farmacologia , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/prevenção & controle , Apoptose , Polissacarídeos/farmacologia , Monossacarídeos/farmacologia
12.
Cancer Biol Ther ; 25(1): 2308165, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38389136

RESUMO

BACKGROUND: MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity. METHODS: The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and in vivo experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC. RESULTS: The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating ß-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis. CONCLUSION: MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/ß-catenin axis, which may be a new therapeutic target for CRC radioresistance.


Assuntos
Neoplasias Colorretais , MicroRNAs , Neoplasias , Radiossensibilizantes , Humanos , beta Catenina/genética , Carcinogênese , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Radiossensibilizantes/farmacologia
13.
Radiat Oncol ; 19(1): 16, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291439

RESUMO

BACKGROUND: Ionotropic glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) modulate proliferation, invasion and radioresistance in glioblastoma (GB). Pharmacological targeting is difficult as many in vitro-effective agents are not suitable for in patient applications. We aimed to develop a method to test the well tolerated AMPAR- and NMDAR-antagonist xenon gas as a radiosensitizer in GB. METHODS: We designed a diffusion-based system to perform the colony formation assay (CFA), the radiobiological gold standard, under xenon exposure. Stable and reproducible gas atmosphere was validated with oxygen and carbon dioxide as tracer gases. After checking for AMPAR and NMDAR expression via immunofluorescence staining we performed the CFA with the glioblastoma cell lines U87 and U251 as well as the non-glioblastoma derived cell line HeLa. Xenon was applied after irradiation and additionally tested in combination with NMDAR antagonist memantine. RESULTS: The gas exposure system proved compatible with the CFA and resulted in a stable atmosphere of 50% xenon. Indications for the presence of glutamate receptor subunits were present in glioblastoma-derived and HeLa cells. Significantly reduced clonogenic survival by xenon was shown in U87 and U251 at irradiation doses of 4-8 Gy and 2, 6 and 8 Gy, respectively (p < 0.05). Clonogenic survival was further reduced by the addition of memantine, showing a significant effect at 2-8 Gy for both glioblastoma cell lines (p < 0.05). Xenon did not significantly reduce the surviving fraction of HeLa cells until a radiation dose of 8 Gy. CONCLUSION: The developed system allows for testing of gaseous agents with CFA. As a proof of concept, we have, for the first time, unveiled indications of radiosensitizing properties of xenon gas in glioblastoma.


Assuntos
Glioblastoma , Radiossensibilizantes , Humanos , Xenônio/farmacologia , Xenônio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Memantina , Células HeLa , Receptores de N-Metil-D-Aspartato , Radiossensibilizantes/farmacologia
14.
Phys Med Biol ; 69(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286017

RESUMO

Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.


Assuntos
Nanopartículas Metálicas , Nanotubos , Radiossensibilizantes , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Simulação por Computador
15.
J Nanobiotechnology ; 22(1): 20, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183048

RESUMO

BACKGROUND: Radiotherapy is one of the mainstays of cancer therapy and has been used for treating 65-75% of patients with solid tumors. However, radiotherapy of tumors has two limitations: high-dose X-rays damage adjacent normal tissue and tumor metastases cannot be prevented. RESULTS: Therefore, to overcome the two limitations of radiotherapy, a multifunctional core-shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer were fabricated by assembling Au8NCs on the surface of a bifunctional nanoimmunomodulator R837/BMS nanocore using nanoprecipitation followed by electrostatic assembly. Formed R837/BMS@Au8 NP composed of R837, BMS-1, and Au8 clusters. Au8NC can enhance X-ray absorption at the tumor site to reduce X-ray dose and releases a large number of tumor-associated antigens under X-ray irradiation. With the help of immune adjuvant R837, dendritic cells can effectively process and present tumor-associated antigens to activate effector T cells, meanwhile, a small-molecule PD-L1 inhibitor BMS-1 can block PD-1/PD-L1 pathway to reactivate cytotoxic T lymphocyte, resulting in a strong systemic antitumor immune response that is beneficial for limiting tumor metastasis. According to in vivo and in vitro experiments, radioimmunotherapy based on R837/BMS@Au8 nanoparticles can increase calreticulin expression on of cancer cells, reactive oxygen species generation, and DNA breakage and decrease colony formation. The results revealed that distant tumors were 78.2% inhibited depending on radioimmunotherapy of primary tumors. Therefore, the use of a novel radiosensitizer R837/BMS@Au8 NPs realizes low-dose radiotherapy combined with immunotherapy against advanced cancer. CONCLUSION: In conclusion, the multifunctional core-shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer effectively limiting tumor metastasis and decrease X-ray dose to 1 Gy, providing an efective strategy for the construction of nanosystems with radiosensitizing function.


Assuntos
Neoplasias , Radiossensibilizantes , Humanos , Adjuvantes Imunológicos , Imiquimode , Neoplasias/radioterapia , Radiossensibilizantes/farmacologia , Radioimunoterapia , Ouro/química
16.
Int J Nanomedicine ; 19: 709-725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283195

RESUMO

Background: Radiotherapy is a widely used clinical tool for tumor treatment but can cause systemic toxicity if excessive radiation is administered. Although numerous nanoparticles have been developed as radiosensitizers to reduce the required dose of X-ray irradiation, they often have limitations, such as passive reliance on radiation-induced apoptosis in tumors, and little consider the unique tumor microenvironment that contributes radiotherapy resistance. Methods: In this study, we developed and characterized a novel self-assembled nanoparticle containing dysprosium ion and manganese ion (Dy/Mn-P). We systematically investigated the potential of Dy/Mn-P nanoparticles (NPs) as a reactive oxygen species (ROS) amplifier and radiosensitizer to enhance radiation therapy and modulate the tumor microenvironment at the cellular level. Additionally, we evaluated the effect of Dy/Mn-P on the stimulator of interferon genes (STING), an innate immune signaling pathway. Results: Physicochemical analysis demonstrated the prepared Dy/Mn-P NPs exhibited excellent dispersibility and stability, and degraded rapidly at lower pH values. Furthermore, Dy/Mn-P was internalized by cells and exhibited selective toxicity towards tumor cells compared to normal cells. Our findings also revealed that Dy/Mn-P NPs improved the tumor microenvironment and significantly increased ROS generation under ionizing radiation, resulting in a ~70% increase in ROS levels compared to radiation therapy alone. This enhanced ROS generation inhibited ~92% of cell clone formation and greatly contributed to cytoplasmic DNA exposure. Subsequently, the activation of the STING pathway was observed, leading to the secretion of pro-inflammatory immune factors and maturation of dendritic cells (DCs). Conclusion: Our study demonstrates that Dy/Mn-P NPs can potentiate tumor radiotherapy by improving the tumor microenvironment and increasing endogenous ROS levels within the tumor. Furthermore, Dy/Mn-P can amplify the activation of the STING pathway during radiotherapy, thereby triggering an anti-tumor immune response. This novel approach has the potential to expand the application of radiotherapy in tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Radiossensibilizantes/uso terapêutico , Nanopartículas/química , Concentração de Íons de Hidrogênio
17.
Breast Cancer Res Treat ; 203(3): 449-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902934

RESUMO

PURPOSE: This study aimed to compare the radiosensitizing effect of the PARP inhibitor, Olaparib, between proton and X-rays irradiations in BRCA-proficient breast cancer (BC) cells. METHODS: Two BRCA-proficient BC cell lines, MDA-MB-231 and T47D BC, were used. Cell proliferation was assessed using the CCK-8 assay, and radiosensitivity was determined through the clonogenic survival assay. Flow cytometry was employed to analyze cell cycle distribution and apoptosis. The kinetics of DNA damage repair were evaluated using γH2AX immunofluorescence imaging and the comet assay. Tumor spheroid assays were conducted to test radiosensitivity in a three-dimensional culture condition. RESULTS: Olaparib sensitized both MDA-MB-231 and T47D cells to proton and X-ray irradiation in the clonogenic assay. MDA-MB-231 cells exhibited a higher dose enhancement factor for Olaparib than T47D cells. Olaparib increased radiation-induced G2/M cell cycle arrest and apoptosis specifically in MDA-MB-231 cells. γH2AX immunostaining and the comet assay showed Olaparib augmented radiation-induced DNA damage and apoptosis. The enhancement effect of Olaparib was more pronounced in proton irradiation than in X-ray irradiation, particularly in MDA-MB-231 cells than T47D cells. Both radiation and Olaparib dose-dependently inhibited spheroid growth in both cell lines. The synergy scores demonstrated that Olaparib interacted more strongly with protons than X-rays. The addition of an ATR inhibitor further enhanced Olaparib-induced proton radiosensitization in MDA-MB-231 cells. CONCLUSION: This study found that Olaparib enhanced radiation efficacy in BRCA-proficient breast cancer cells, with a more pronounced effect observed with proton irradiation compared to X-ray irradiation. Combining Olaparib with an ATR inhibitor increased the radiosensitizing effect of protons.


Assuntos
Neoplasias da Mama , Piperazinas , Radiossensibilizantes , Humanos , Feminino , Raios X , Prótons , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Ftalazinas/farmacologia , Apoptose
18.
Chemistry ; 30(4): e202302720, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888749

RESUMO

The impact of kinetic lability or reactivity on in vitro cytotoxicity, stability in plasma, in vivo tumor and tissue accumulation, and antitumor efficacy of functional platinum(II) (Pt) anticancer agents containing a O˄O ß-diketonate leaving ligand remain largely unexplored. To investigate this, we synthesized Pt complexes [(NH3 )2 Pt(L1-H)]NO3 and [(DACH)Pt(L1-H)]NO3 (L1=4,4,4-trifluoro-1-ferrocenylbutane-1,3-dione, DACH=1R,2R-cyclohexane-1,2-diamine) containing an electron deficient [L1-H]- O˄O leaving ligand and [(NH3 )2 Pt(L2-H)]NO3 and [(DACH)Pt(L2-H)]NO3 (L2=1-ferrocenylbutane-1,3-dione) containing an electron-rich [L2-H]- O˄O leaving ligand. While all four complexes have comparable lipophilicity, the presence of the electron-withdrawing CF3 group was found to dramatically enhance the reactivity of these complexes toward nucleophilic biomolecules. In vitro cellular assays revealed that the more reactive complexes have higher cellular uptake and higher anticancer potency as compared to their less reactive analogs. But the scenario is opposite in vivo, where the less reactive complex showed improved tissue and tumor accumulation and better anticancer efficacy in mice bearing ovarian xenograft when compared to its more reactive analog. Finally, in addition to demonstrating the profound but contrasting impact of kinetic lability on in vitro and in vivo antitumor potencies, we also described the impact of kinetic lability on the mechanism of action of this class of promising antitumor agents.


Assuntos
Antineoplásicos , Cicloexilaminas , Neoplasias , Radiossensibilizantes , Humanos , Animais , Camundongos , Platina , Ligantes , Compostos Organoplatínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
19.
Adv Sci (Weinh) ; 11(6): e2306190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049204

RESUMO

Radiotherapy (RT) resistance is an enormous challenge in glioblastoma multiforme (GBM) treatment, which is largely associated with DNA repair, poor distribution of reactive radicals in tumors, and limited delivery of radiosensitizers to the tumor sites. Inspired by the aberrant upregulation of RAD51 (a critical protein of DNA repair), scavenger receptor B type 1 (SR-B1), and C-C motif chemokine ligand 5 (CCL5) in GBM patients, a reduction-sensitive nitric oxide (NO) donor conjugate of gemcitabine (RAD51 inhibitor) (NG) is synthesized as radio-sensitizer and a CCL5 peptide-modified bioinspired lipoprotein system of NG (C-LNG) is rationally designed, aiming to preferentially target the tumor sites and overcome the RT resistance. C-LNG can preferentially accumulate at the orthotopic GBM tumor sites with considerable intratumor permeation, responsively release the gemcitabine and NO, and then generate abundant peroxynitrite (ONOO- ) upon X-ray radiation, thereby producing a 99.64% inhibition of tumor growth and a 71.44% survival rate at 120 days in GL261-induced orthotopic GBM tumor model. Therefore, the rationally designed bioinspired lipoprotein of NG provides an essential strategy to target GBM and overcome RT resistance.


Assuntos
Glioblastoma , Oxidiazóis , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Glioblastoma/genética , Gencitabina , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Lipoproteínas
20.
Anticancer Agents Med Chem ; 24(1): 50-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37921146

RESUMO

BACKGROUND: Numerous studies have proven the efficacy and safety of natural products, and are widely used as attractive cancer treatments. The investigation of effective natural products for improving cancer treatment is a promising strategy. Combination treatment with radiosensitizers and radiotherapy (RT) is considered necessary for therapeutic improvement in head and neck squamous cell carcinoma(HNSCC). OBJECTIVE: This study aims to investigate whether Ephedra sinica (ES) extract could induce selective cell death in cancer cells and serve as a radiosensitizer for HNSCC. METHODS: HNSCC cells were pretreated with ES extract before radiation, and the radiosensitizing activity was assessed using a colony formation assay. Radiation-induced cell death was evaluated using an annexinV-FITC assay. Western blotting was performed to confirm cell death-related gene expression, including apoptosis and necrosis markers. RESULTS: ES extract significantly inhibited HNSCC cell viability (FaDu and SNU1076), while having minimal effect on normal HaCaT cells. When HNSCC cells were irradiated with 2, 4, or 8 Gy and cultured with ES extract (25 µg/mL), they exhibited increased radiation sensitivity compared to non-treated cells. The combination of ES extract and radiation resulted in increased cell death compared to non-treated, ES-treated, or irradiated cells. The apoptosis marker BAX and necrosis marker p-MLKL expression levels were also elevated following the combination treatment. CONCLUSION: ES extract demonstrated significant cytotoxic potential in HNSCC cells without affecting normal cells. It enhanced the radiosensitivity of HNSCC cells by upregulating BAX and p-MLKL expression, leading to increased cell death. These results suggest ES extract exhibits a potential radiosensitizing capacity in HNSCC.


Assuntos
Produtos Biológicos , Carcinoma de Células Escamosas , Ephedra sinica , Neoplasias de Cabeça e Pescoço , Radiossensibilizantes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteína X Associada a bcl-2/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Linhagem Celular Tumoral , Morte Celular , Apoptose , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Necrose , Produtos Biológicos/farmacologia , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...